# Optical and Structural Properties of Gold/DNA Nanocomposites

Sung Yong Park and David Stroud, Physics Dep't, Ohio State (DMR01-04987)

- A gold/DNA composite is a suspension of gold nanoparticles (<20 nm diam.) + DNA in aqueous solution.
- At high T, gold particles are isolated: sharp absorption line.
- At low T, DNA strands link nanoparticles into aggregate; broad absorption peak
- We have successfully modeled both aggregate freezing and change in optical properties

# Methodology

- There are two parts to the calculation: (i) finding the structure of the composites, and (ii) computing the optical properties.
- We assume the structure forms by reaction-limited aggregation, followed by breaking of the DNA links between particles (``dehybridization'').

- Optical props found using "Discrete Dipole Approximation" (DDA)
- The next slide shows
- (upper left) gold particles connected by DNA links;
- (upper right) phase diagram of aggregate;
- (lower left) shape of aggregate at various T; and
- (lower right) measured and calculated absorption at 520 nm versus T

### DNA/gold nanocomposite





# 2. Morphologies from a structural model



#### 1. Expected phase diagram



# 3. DDA calculation of extinction cross section

#### Theory (left) and experiment (right)



S. Y. Park and D. Stroud, Phys. Rev. B (2003); R. Jin, et. al, J. Am. Chem. Soc. **125**, 1643 (2003).

# Conclusions

- Structure and optical properties of gold/DNA nanocomposites can be successfully modeled
- We are now working on models which can treat optical differences between different kinds of DNA linked to gold particles
- Materials may be useful in selective detection of different organic molecules

# Educational Activities of Project DMR 01-04987 - Project participants include:

- Principal Investigator (David Stroud)
- Two postdoctoral researchers (Dr. Sung Yong Park and Dr. Hayoun Lee)
- Eight graduate students (Greg Mohler\*, Eivind Almaas\*, Sergey Barabash\*, Wissam Al-Saidi\*, Ivan Tornes, Daniel Valdez-Balderas, Kwangmoo Kim, and Kohjiro Kobayashi
- Three international collaborators: David Bergman (Tel-Aviv Univ.), Yakov Strelniker (Bar-Ilan Univ.), Pak-Ming Hui (Chinese Univ. of Hong Kong).
- (\* denotes student who has recently received Ph. D and has postdoctoral or permanent position)